|
|
@@ -1,57 +1,115 @@
|
|
|
module Docs
|
|
|
class Pytorch
|
|
|
class EntriesFilter < Docs::EntriesFilter
|
|
|
- NAME_REPLACEMENTS = {
|
|
|
- "Distributed communication package - torch.distributed" => "torch.distributed"
|
|
|
+ TYPE_REPLACEMENTS = {
|
|
|
+ "torch.Tensor" => "Tensor",
|
|
|
+ "torch.nn" => "Neuro Network",
|
|
|
+ "Probability distributions - torch.distributions" => "Probability Distributions",
|
|
|
+ "torch" => "Torch",
|
|
|
+ "Quantization" => "Quantization",
|
|
|
+ "torch.optim" => "Optimization",
|
|
|
+ "torch.Storage" => "Storage",
|
|
|
+ "torch.nn.functional" => "NN Functions",
|
|
|
+ "torch.cuda" => "CUDA",
|
|
|
+ "Torch Distributed Elastic" => "Distributed Elastic",
|
|
|
+ "torch.fx" => "FX",
|
|
|
+ "TorchScript" => "Torch Script",
|
|
|
+ "torch.onnx" => "ONNX",
|
|
|
+ "Distributed communication package - torch.distributed" => "Distributed Communication",
|
|
|
+ "Automatic differentiation package - torch.autograd" => "Automatic Differentiation",
|
|
|
+ "torch.linalg" => "Linear Algebra",
|
|
|
+ "Distributed Checkpoint - torch.distributed.checkpoint" => "Distributed Checkpoint",
|
|
|
+ "Distributed RPC Framework" => "Distributed RPC",
|
|
|
+ "torch.special" => "SciPy-like Special",
|
|
|
+ "torch.package" => "Package",
|
|
|
+ "torch.backends" => "Backends",
|
|
|
+ "FullyShardedDataParallel" => "Fully Sharded Data Parallel",
|
|
|
+ "torch.sparse" => "Sparse Tensors",
|
|
|
+ "torch.export" => "Traced Graph Export",
|
|
|
+ "torch.fft" => "Discrete Fourier Transforms",
|
|
|
+ "torch.utils.data" => "Datasets and Data Loaders",
|
|
|
+ "torch.monitor" => "Monitor",
|
|
|
+ "Automatic Mixed Precision package - torch.amp" => "Automatic Mixed Precision",
|
|
|
+ "torch.utils.tensorboard" => "Tensorboard",
|
|
|
+ "torch.profiler" => "Profiler",
|
|
|
+ "torch.mps" => "MPS",
|
|
|
+ "DDP Communication Hooks" => "DDP Communication Hooks",
|
|
|
+ "Benchmark Utils - torch.utils.benchmark" => "Benchmark Utils",
|
|
|
+ "torch.nn.init" => "Parameter Initializations",
|
|
|
+ "Tensor Parallelism - torch.distributed.tensor.parallel" => "Tensor Parallelism",
|
|
|
+ "torch.func" => "JAX-like Function Transforms",
|
|
|
+ "Distributed Optimizers" => "Distributed Optimizers",
|
|
|
+ "torch.signal" => "SciPy-like Signal",
|
|
|
+ "torch.futures" => "Miscellaneous",
|
|
|
+ "torch.utils.cpp_extension" => "Miscellaneous",
|
|
|
+ "torch.overrides" => "Miscellaneous",
|
|
|
+ "Generic Join Context Manager" => "Miscellaneous",
|
|
|
+ "torch.hub" => "Miscellaneous",
|
|
|
+ "torch.cpu" => "Miscellaneous",
|
|
|
+ "torch.random" => "Miscellaneous",
|
|
|
+ "torch.compiler" => "Miscellaneous",
|
|
|
+ "Pipeline Parallelism" => "Miscellaneous",
|
|
|
+ "Named Tensors" => "Miscellaneous",
|
|
|
+ "Multiprocessing package - torch.multiprocessing" => "Miscellaneous",
|
|
|
+ "torch.utils" => "Miscellaneous",
|
|
|
+ "torch.library" => "Miscellaneous",
|
|
|
+ "Tensor Attributes" => "Miscellaneous",
|
|
|
+ "torch.testing" => "Miscellaneous",
|
|
|
+ "torch.nested" => "Miscellaneous",
|
|
|
+ "Understanding CUDA Memory Usage" => "Miscellaneous",
|
|
|
+ "torch.utils.dlpack" => "Miscellaneous",
|
|
|
+ "torch.utils.checkpoint" => "Miscellaneous",
|
|
|
+ "torch.__config__" => "Miscellaneous",
|
|
|
+ "Type Info" => "Miscellaneous",
|
|
|
+ "torch.utils.model_zoo" => "Miscellaneous",
|
|
|
+ "torch.utils.mobile_optimizer" => "Miscellaneous",
|
|
|
+ "torch._logging" => "Miscellaneous",
|
|
|
+ "torch.masked" => "Miscellaneous",
|
|
|
+ "torch.utils.bottleneck" => "Miscellaneous"
|
|
|
}
|
|
|
|
|
|
- def get_breadcrumbs()
|
|
|
- css('.pytorch-breadcrumbs > li').map { |node| node.content.delete_suffix(' >') }
|
|
|
+ def get_breadcrumbs
|
|
|
+ css('.pytorch-breadcrumbs > li').map {
|
|
|
+ |node| node.content.delete_suffix(' >').strip
|
|
|
+ }.reject { |item| item.nil? || item.empty? }
|
|
|
end
|
|
|
|
|
|
def get_name
|
|
|
- # The id of the container `div.section` indicates the page type.
|
|
|
- # If the id starts with `module-`, then it's an API reference,
|
|
|
- # otherwise it is a note or design doc.
|
|
|
- section_id = at_css('.section[id], section[id]')['id']
|
|
|
- if section_id.starts_with? 'module-'
|
|
|
- section_id.remove('module-')
|
|
|
- else
|
|
|
- name = get_breadcrumbs()[1]
|
|
|
- NAME_REPLACEMENTS.fetch(name, name)
|
|
|
- end
|
|
|
+ b = get_breadcrumbs
|
|
|
+ b[(b[1] == 'torch' ? 2 : 1)..].join('.')
|
|
|
end
|
|
|
|
|
|
def get_type
|
|
|
- name
|
|
|
+ t = get_breadcrumbs[1]
|
|
|
+ TYPE_REPLACEMENTS.fetch(t, t)
|
|
|
end
|
|
|
|
|
|
def include_default_entry?
|
|
|
- # Only include API references, and ignore notes or design docs
|
|
|
- !subpath.start_with? 'generated/' and type.start_with? 'torch'
|
|
|
+ # Only include API entries to simplify and unify the list
|
|
|
+ return name.start_with?('torch.')
|
|
|
end
|
|
|
|
|
|
def additional_entries
|
|
|
return [] if root_page?
|
|
|
|
|
|
entries = []
|
|
|
-
|
|
|
- css('dt').each do |node|
|
|
|
- name = node['id']
|
|
|
- if name == self.name or name == nil
|
|
|
+ css('dl').each do |node|
|
|
|
+ dt = node.at_css('dt')
|
|
|
+ if dt == nil
|
|
|
+ next
|
|
|
+ end
|
|
|
+ id = dt['id']
|
|
|
+ if id == name or id == nil
|
|
|
next
|
|
|
end
|
|
|
|
|
|
- case node.parent['class']
|
|
|
- when 'method', 'function'
|
|
|
- if node.at_css('code').content.starts_with? 'property '
|
|
|
- # this instance method is a property, so treat it as an attribute
|
|
|
- entries << [name, node['id']]
|
|
|
- else
|
|
|
- entries << [name + '()', node['id']]
|
|
|
- end
|
|
|
- when 'class', 'attribute'
|
|
|
- entries << [name, node['id']]
|
|
|
+ case node['class']
|
|
|
+ when 'py method', 'py function'
|
|
|
+ entries << [id + '()', id]
|
|
|
+ when 'py class', 'py attribute', 'py property'
|
|
|
+ entries << [id, id]
|
|
|
+ when 'footnote brackets', 'field-list simple'
|
|
|
+ next
|
|
|
end
|
|
|
end
|
|
|
|